WNE Linear Algebra Final Exam Series B

2 February 2023

Please use separate sheets for different problems. Please use single sheet for all questions. Give reasons to your answers. Please provide the following data on each sheet

- name, surname and your student number,
- number of your group,
- number of the corresponding problem and the series.

Each problem is worth 10 marks. Each question is worth 4 marks.

Problems

Problem 1.

Let V = lin((1, 2, 7), (2, 3, 12), (1, 4, 11)) be a subspace of \mathbb{R}^3 .

- a) find a basis \mathcal{A} of the subspace V and the dimension of V,
- b) for which $t \in \mathbb{R}$ does the vector v = (2, -1, t) belong to V? for all such $t \in \mathbb{R}$ find coordinates of v relative to basis \mathcal{A} .

Problem 2.

Let $V \subset \mathbb{R}^4$ be a subspace given by the homogeneous system of linear equations

$$\begin{bmatrix} x_1 + x_2 + 5x_3 &= 0\\ 2x_1 + 3x_2 + 12x_3 + x_4 &= 0\\ -3x_1 + 13x_2 + 17x_3 + 16x_4 &= 0 \end{bmatrix}$$

- a) find a basis and the dimension of the subspace V,
- b) for which $t \in \mathbb{R}$ is the subspace V contained in the subspace W_t , i.e. $V \subset W_t$, where

$$W_t = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 - x_2 + tx_3 - 2x_4 = 0\}?$$

Problem 3.

Let

	A =	$\begin{bmatrix} 3\\2\\4\\3 \end{bmatrix}$	1 1 1 1	$ \begin{array}{c} 1 \\ 4 \\ 2 \\ 3 \end{array} $	$ 3 \\ 3 \\ 2 \\ 3 $,	<i>B</i> =	$\left[\begin{array}{c}0\\0\\2\\3\end{array}\right]$	${0 \\ 0 \\ 3 \\ 4}$	${3 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	7 5 0 0	
--	-----	--	------------------	---	--	---	------------	--	----------------------	--	------------------	--

a) compute $\det A$,

b) compute $\det(B^{\intercal}ABA)$.

Problem 4.

Let $\varphi \colon \mathbb{R}^2 \to \mathbb{R}^2$ be a linear endomorphism given by the formula

$$\varphi((x_1, x_2)) = (2x_1 + x_2, -2x_1 + 5x_2).$$

- a) find the eigenvalues of φ and bases of the corresponding eigenspaces. Find a basis \mathcal{A} of \mathbb{R}^2 consisting of eigenvectors of φ .
- b) find the matrix $M(\varphi \circ \varphi)_{st}^{\mathcal{A}}$.

Problem 5.

Let $V = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 - x_2 - x_3 = 0\}$ be a subspace of \mathbb{R}^3 .

- a) find an orthonormal basis of V,
- b) compute the orthogonal projection of w = (8, 1, 1) onto V.

Problem 6.

Consider the following linear programming problem $-x_2 + 4x_4 \rightarrow \min$ in the standard form with constraints

- $\begin{cases} x_1 + x_2 + x_3 + x_4 = 6\\ 3x_1 + 2x_2 + x_3 + x_4 = 8 \end{cases} \text{ and } x_i \ge 0 \text{ for } i = 1, \dots, 4.$
- a) which of the sets $\mathcal{B}_1 = \{3, 4\}$, $\mathcal{B}_2 = \{2, 4\}$, $\mathcal{B}_3 = \{1, 2\}$ is basic feasible? Write the corresponding basic solution for all basic sets,
- b) solve the linear programming problem using simplex method.

Questions

Question 1.

Let $\varphi \colon \mathbb{R}^2 \to \mathbb{R}^2$ be an endomorphism given by the formula

$$\varphi((x_1, x_2)) = (3x_1 - x_2, tx_1 + 2x_2).$$

For which $t \in \mathbb{R}$ is vector v = (1, 1) an eigenvector of φ ? Find the corresponding eigenvalue.

Question 2.

Let $A \in M(n \times n; \mathbb{R})$, det $A \neq 0$ be a diagonalizable matrix. If $C^{-1}AC = D$ is a diagonal matrix for some invertible matrix $C \in M(n \times n; \mathbb{R})$, does it follow that columns of C^{-1} are eigenvectors of matrix A^{-1} ?

Question 3.

If $A \in M(2 \times 2; \mathbb{R})$ is an antisymmetric matrix, i.e. $A^{\intercal} = -A$, and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is the unit matrix, does it follow that matrix A + I is invertible?

Question 4.

Matrix $M(P_V)_{st}^{st} = \begin{bmatrix} \frac{1}{10} & \frac{3}{10} \\ \frac{3}{10} & \frac{9}{10} \end{bmatrix}$ is a matrix of an orthogonal projection P_V onto some subspace $V \subset \mathbb{R}^2$. Find an orthonormal basis of V^{\perp} .

Question 5.

Vectors (1,3) and (1,5) are (some) solutions of a system of linear equations in two variables. Given that (0,0) is not a solution, find an example of a third solution of that system different from the two others.